
Source: Wireless Congress 2014: Systems & Applications

Bluetooth Low Energy for the last 30 Meters of the

Internet of Things

Dr. Cuno Pfister

Oberon microsystems, Inc.

Zürich, Switzerland

pfister@oberon.ch

Abstract—Bluetooth Low Energy is becoming in-

creasingly important as a technology for the last 30

meters of the Internet of Things. Its GATT protocol

can be mapped generically to HTTP, so that the Web

can be expanded into a Web of Things reaching down

even to low-cost wireless sensors and actuators. The

mapping is done in gateways that implement the

standardized GATT REST API.

Keywords—Bluetooth Low Energy; Bluetooth

Smart; Internet of Things; Web of Things; GATT;

REST API; Gateway; Beacon

I. BLUETOOTH LOW ENERGY

Bluetooth Low Energy [1], also known as BLE or by
its marketing name Bluetooth Smart, has originally been
developed at a Nokia Research Center as a short-range,
low power wireless technology under the name Wibree.
Nokia eventually passed control over BLE to the Blue-
tooth SIG [2]. It became an official part of Bluetooth 4.0
in 2010.

Like Classic Bluetooth, BLE operates in the 2.4 GHz
spectrum, and uses adaptive frequency hopping for ro-
bustness against interferences. Unlike Classic Bluetooth,
it uses fewer but broader channels, a different modulation
scheme optimized for low power usage, and has a faster
connection mechanism. The latter uses three reserved
advertisement channels that were carefully chosen to
minimize interference with the WiFi bands.

While BLE supports up to 260 kpbs data rate, it is
typically used for occasional updates of sensor values,
e.g. a temperature value, or for remotely controlling ac-
tuators, e.g. a light bulb’s on/off state. The main goal is to
reduce power consumption so that certain sensors may
operate for years on a coin cell battery. The range in
practice is roughly 30 meters, strongly depending on
obstructions and the used antennas: with free line-of-

sight, the range may be larger; in densely packed rooms it
may be less.

II. BLE AND APPS

Today, BLE sensors and actuators are typically con-
trolled from apps running on mobile devices – smart-
phones and tablets. Such BLE devices are sometimes
called appcessories (from app and accessories). Here is
an example of a heart rate monitor that supports BLE
(Figure 1, [3]):

Figure 1 - Example of a BLE heart rate sensor

For wearables – e.g. pulse meters, fitness arm bands,
smart watches – BLE clearly dominates as the wireless
technology of choice. This is due to the low power con-
sumption of BLE chips, their small sizes and low cost.
However, at least as important is the fact that by now,
every modern smartphone supports BLE in addition to
Classic Bluetooth (Bluetooth Smart Ready). The cost of
adding BLE to a product that already supports Classic
Bluetooth is negligible. Apple has started adding BLE
support to all its devices starting with the iPhone 4S,
including a flexible API for app developers. Meanwhile,
BLE support has been added also to Android and Win-
dows Phone. Besides mobile phone networks and WiFi,
BLE has thus become the only cross-platform wireless
technology from an app developer’s perspective.

Mobile devices have thus become the freight train that
is pulling along BLE on an impressive growth path. The
Bluetooth SIG has extensive market data, but you can

Source: Wireless Congress 2014: Systems & Applications

check Google Trends for “Bluetooth Smart” to get an
impression yourself. Another indication was the recent
first edition of the Bluetooth Europe conference in
Amsterdam this year: although it was an event for all
Bluetooth topics, and Classic Bluetooth still has year-
over-year growth of 20%, BLE was the all-dominating
topic in Amsterdam.

III. APPS AS TEMPORARY INTERNET GATEWAYS

Many BLE apps connect to the Internet sporadically.
For example, a plant sensor (Figure 2, [4]) may sample
temperature and humidity in regular intervals, and store
them temporarily for up to a few months. The plant sen-
sor app may try once per day to connect to the registered
plant sensors, fetch all stored samples, and push them to a
gardening web service hosted by the company that pro-
duces the plant sensors. The user is then notified by the
web service, for example when it detects that some plant
needs more (or less) water.

Figure 2 - Example of a BLE plant sensor

 Firmware updates are another scenario where the
mobile app acts as a temporary Internet gateway: the app
regularly checks the gardening web service whether new
firmware for the sensors has become available. When this
is the case, it downloads it to the mobile device, and then
performs an over-the-air update to the registered BLE
sensor(s).

The gateway functionality of most BLE apps that
connect to the Internet is highly application-specific: the
data that is transmitted; the format of the data; whether
data is pushed or pulled; whether app or cloud initiate
communication; what kind of events or timing schedules
trigger communication; whether/how a user is involved;
what types of BLE sensors are supported; etc.

However, regardless what the exact gateway function-
ality of an app is, it allows connecting the Internet to the
physical world, to “Things”. Often, these things are

simply considered to be the sensors and actuators, such as
the plant sensor in the previous example. However, the
more relevant things are those actually measured by a
sensor, or manipulated by an actuator. For example, the
interesting thing that a plant sensor makes accessible to
the Internet is the stress level of the monitored plant. This
thing is useful, because it is actionable: if a plant’s stress
level is high, and this is due to too much humidity at the
roots, then a user can be notified with the recommenda-
tion to drain the plant’s pot.

IV. LIMITATIONS OF TEMPORARY INTERNET

GATEWAYS

Wearable BLE devices move along with their users,
and therefore along with their users’ mobile devices.
Thus they typically remain in range with BLE apps
running on those mobile devices. Whenever such a BLE
device needs access to the Internet, it can use a suitable
smartphone app as a temporary gateway.

For non-wearable BLE devices, the opportunities for
using a mobile device as a gateway fully depend on the
user’s behavior, and are thus far more limited and far less
predictable. For example, if a machine in a factory is
equipped with a BLE module, it can only connect to the
Internet if and when a field technician with a suitable
smartphone app is nearby. Depending on the use case,
e.g. reconfiguration of the machine under human super-
vision, this may be exactly the right thing. Or it may be
too limiting, for example in the following cases:

 for sending an alarm when a gas leak is detected in
a plant;

 for periodically sending environmental data about
a glacier that is barely accessible to humans, and
where the system must work under harsh temper-
ature conditions;

 for health monitoring applications where continu-
ous monitoring is important, without having to rely
on users not forgetting to charge their smart-
phones;

 for the around-the-clock logging of assets equip-
ped with mobile beacons

1
 that enter or leave a

warehouse.

Generally speaking: whenever continuous and reliable
connectivity is desired, when no natural and close associ-
ation between sensor and human user exists, or when the
environment is unsuitable for humans (and their con-
sumer-grade electronics), then temporary Internet gate-
ways can become too limiting.

1
 BLE beacons broadcast a beacon ID, which can be used for

indoor positioning, location-specific advertising, logistics, and

other applications that use location or proximity as inputs.

Source: Wireless Congress 2014: Systems & Applications

V. BEYOND TEMPORARY INTERNET GATEWAYS

The usefulness of BLE devices, and thus their market
potential, can be increased by creating permanent, robust
and unattended Internet gateways. They may or may not
have continuously active Internet connections. For exam-
ple, Internet connections may be open only during speci-
fic time windows, or after an event has been detected.
However, they are not depending on the presence of hu-
man users.

A permanent Internet gateway should be a special-
purpose device in the sense that its operation is dedicated
purely to the gateway functionality. However, it should
not be a special-purpose device in the sense that you end
up buying a gateway for every specific application, e.g., a
gardening gateway, a home security gateway, a home
cinema gateway, a lighting gateway, etc.

To avoid a proliferation of nearly identical gateway
boxes, it should be possible for all BLE applications to
share a single Internet gateway. To achieve interopera-
bility of any BLE Internet gateway with any cloud app-
lication, a standard is required for the interface between
gateway and the Internet.

Like HTTP is the application layer of the Internet, the
Generic Attribute Profile (GATT) is the application-layer
protocol of BLE. There are mainly two approaches how
BLE Internet gateways may operate: either with inte-
gration below this GATT layer, or with integration at the
GATT layer. The Bluetooth SIG has standardized the
latter with a bidirectional mapping from GATT to HTTP.

We will first take a brief look at GATT, continuing
with this standardized GATT-HTTP mapping.

VI. GATT PROTOCOL

Basically, GATT allows the reading and writing of re-
mote variables (called characteristics), e.g. the tempera-
ture as measured by a BLE temperature sensor, or the
open/closed state of a BLE valve actuator. The length of
transmitted values typically ranges between 20 and 40
bytes.

Related characteristics are grouped into services. A
service is a reusable interface. For example, the Device
Information Service provides information about the de-
vice’s manufacturer and model number, and the Heart
Rate Service exposes heart rate information. A growing
number of such services are standardized [5], but it is
possible to define custom services as well.

Services are a key concept of BLE, enabling a truly
service-oriented architecture on the smallest of devices.
A BLE device provides one or more services that can be
used from a smartphone, tablet, or from a Web applica-
tion via a gateway. Over the lifetime of a BLE device, the

device may provide a changing set of services. For exam-
ple, after a firmware update, the device may provide use-
ful new services in addition to the old ones.

A service is defined as an immutable set of character-
istics. This means that if and when a service is published,
no characteristic may be added, removed, or changed
anymore. A service can be regarded as a contract that the
device (or rather, its developer) has signed, and on which
clients of the service can rely.

If new functionality should be added to a product, in a
new product version or after a firmware update of exist-
ing devices, then at least one new service needs to be pro-
vided, which may extend an existing service with added
functionality, or which may be used as a replacement for
the old version of the service(s).

The motivation for this design is to attain a well-
defined and graceful application behavior, no matter what
versions of BLE devices and clients happen to come into
range with each other. The problem is that a BLE app or
other BLE client depends on certain capabilities of the
BLE devices to which it may connect. In general, there is
no way to guarantee that only the most up-to-date BLE
devices interact with only the most up-to-date BLE cli-
ents, so compatibility cannot be assumed. Services are a
way for BLE devices to negotiate a compatible set of ca-
pabilities with their BLE clients.

To illustrate this idea, consider the ways in which a
BLE device (the server) may meet a client device (here a
smartphone with a BLE app), assuming both support the
same use case. Further assume that an original service
ServiceA had been defined for this use case, and later a
replacement ServiceB was defined that offers improve-
ments in functionality, e.g. by adding more character-
istics. Newer versions of the peripheral define both
ServiceA and ServiceB. Then, there are four possible con-
stellations, as visualized in Figure 3:

1) Original app meets an original device: The app dis-

covers ServiceA on the device. It can then use the device.

2) Original app meets a new device: The app discovers

ServiceA on the device. As the app doesn’t know about

ServiceB, it does not try to discover it. However, it can still

provide the reduced functionality defined in ServiceA.

3) New app meets new device: The app discovers ServiceB

on the device. The app knows about, and can take advan-

tage of, the additional characteristics in ServiceB.

4) New app meets original device: The app looks for

ServiceB on the device, but the device responds with an er-

ror message indicating that the service is unknown. Then,

the app tries looking for the older ServiceA, which is avail-

able. So the app can gracefully fall back to this older ser-

vice.

Source: Wireless Congress 2014: Systems & Applications

Figure 3 - Possible version configurations

Note that an app does not need to support an old and
completely outdated service forever. If the service is not
sufficiently relevant in the market anymore, a new app
version may leave out support for the old service. Simi-
larly, a new firmware version for a BLE device may not
support the old service anymore.

To avoid a frustrating user experience with incom-
patible devices, a robust dependency management mech-
anism such as the one described above is needed. Other-
wise, end users would quickly become confronted with
the Internet of Things version of “Dependency Hell”, the
opposite of Plug & Play: devices sometimes work, some-
times some features work and others don’t, sometimes
nothing works, and it is unclear where exactly the pro-
blems come from. With inexpensive devices that may re-
main in use for many years, and may not even provide
the possibility for firmware updates, version mismatches
between devices will be frequent. GATT provides a very
lightweight set of conventions to address this problem in
a robust way.

VII. GAP REST API AND GATT REST API

Mapping GATT to HTTP in a RESTful way [6] is
largely straight-forward, and standardized by the Blue-
tooth SIG in the GATT REST API [7]. Services and char-
acteristics are REST resources. For obtaining a sensor
value, a HTTP GET request is sent to the gateway, where
it is translated into a BLE read request. Similarly, for set-
ting an actuator value, a HTTP PUT request is sent to the
gateway, where it is translated into a BLE write request.
Sometimes, such requests need to be sent only rarely, e.g.
once per day. Then it is adequate to poll sensors if and
when this needed. If frequent updates of sensor values are
needed, however, it is possible to subscribe to notifica-
tions of new values, using the Server-Sent Events [8]
mechanism.

A companion specification, the GAP REST API [9],
specifies how BLE devices can be discovered and how
connections can be managed.

HTTP request content is represented in JSON [10]
format. An example request is given here:

GET

 /gatt/nodes/00:1B:C5:08:50:70

 /characteristics/0003_0000/value

 HTTP/1.1

Host: gsiot-ffmq-ttd5.try.yaler.net

The response to this request has status code 200 (OK),
content type “application/json”, and the following con-
tent:

{

 "self":

 {

 "href": "http://gsiot-ffmq-

ttd5.try.yaler.net/gatt/

nodes/00:1B:C5:08:50:70/

characteristics/0003_0000"

 },

 "handle": "0003_0000",

 "value": "0x00000000"

}

First implementations of the GATT REST API can be
expected in late 2014, e.g. the Limmat Gateway reference
design (Figure 4, [11]):

Figure 4 – Limmat BLE gateway

VIII. FIREWALLS AND NETWORK ADDRESS

TRANSLATION

A BLE gateway is typically behind a firewall and net-
work address translator. Therefore, a suitable mechanism
for accessing the gateway from the Internet is needed.

ServiceA

ServiceB

ServiceA

ServiceB

ServiceA

ServiceA

ServiceA

ServiceA

ServiceB

ServiceA

ServiceB

ServiceA
Not found!

BLE client, e.g. smartphone BLE server, e.g. heart rate monitor

ServiceA

ServiceA

Service implemented
by a BLE server

Discovery and use of a
service by a BLE client

First discovery and
then use of a service

1

2

3

4

Source: Wireless Congress 2014: Systems & Applications

There are various solutions, e.g. port forwarding [12],
VPNs, or reverse HTTP proxies (e.g. [13]).

Source: Wireless Congress 2014: Systems & Applications

IX. FUTURE WORK

The GATT REST API is the standard approach for in-
tegrating BLE and the Web, i.e., for integration at the ap-
plication layer. There is also work being done on a speci-
fication for integration below the application layer, by
using the BLE physical layer for transmitting IP packets
all the way to and from BLE devices. A gateway at this
level is basically a fully generic IP router. Even with
6LoWPAN [14] header compression, some impact on
message size and power consumption must be expected.

One BLE chip vendor has announced to demonstrate
IPv6 over BLE still in 2014 (Nordic Semiconductor,
[15]).

Although not related to Internet connectivity, two
interesting developments will affect the range that can be
achieved with BLE:

A BLE module vendor (BlueGiga, [16]) has shown
that optimization of a BLE receiver’s analog circuitry can
increase the range of BLE considerably. In line-of-sight
experiments, a range of more than 400 m has been
achieved.

Another BLE chip vendor is already shipping a mesh
networking protocol implemented on top of BLE (CSR,
[17]). This allows accessing BLE sensors over several
hops, using other BLE nodes as relays.

X. CONCLUSIONS

There will be a plethora of communication protocols
for the last meters of the Internet of Things. For wire-
lessly accessing battery-powered sensors, BLE is very
well positioned – not least thanks to BLE support on all
modern smartphones. A less visible asset of BLE is its
service-oriented GATT protocol, which is light-weight
and supports robust service evolution over time. With the
standardized mapping of GATT to an HTTP REST API,
BLE can be easily integrated into the overarching Inter-
net of Things.

REFERENCES

[1] M. Galeev, “Bluetooth 4.0: An introduction to Bluetooth Low Energy”,

EETimes, July 2011, last viewed on 7-Oct-2014,
http://www.eetimes.com/document.asp?doc_id=1278927.

[2] Bluetooth SIG, “Bluetooth Developer Portal”, last viewed on 7-Oct-
2014, https://developer.bluetooth.org/gatt/Pages/default.aspx.

[3] http://www.polar.com/en/products/accessories/H7_heart_rate_sensor

[4] M. Burns, TechCrunch, “Parrot’s Flower Power Plant Sensor gives you
a Mobile Green Thumb”, last viewed on 7-Oct-2014,
http://techcrunch.com/2014/02/28/parrots-flower-power-plant-sensor-
gives-you-a-mobile-green-thumb/

[5] Bluetooth SIG, “Bluetooth Developer Portal”, last viewed on 13-Oct-
2014, https://developer.bluetooth.org/gatt/Pages/GATT-Specification-
Documents.aspx.

[6] L. Richardson, M. Amundsen, “RESTful Web APIs”, O’Reilly Media
2013, ISBN 1449358063.

[7] Bluetooth SIG, “GATT REST API”, last viewed on 8-Oct-2014,
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=
285910.

[8] W3C, “Server-Sent Events”, last viewed on 8-Oct-2014,
http://www.w3.org/TR/2009/WD-eventsource-20091029/-

[9] Bluetooth SIG, “GAP REST API”, last viewed on 8-Oct-2014,
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=
285911.

[10] D. Crawford, JSON website, last viewed on 8-Oct-2014,
http://www.json.org/.

[11] Limmat site of Oberon microsystems, Inc., “Limmat: where Web meets
BLE”, last viewed on 13-Oct-2014, http://www.limmat.co.

[12] wikiHow, “How to Set Up Port Forwarding on a Router”, last viewed on
8-Oct-2014, http://www.wikihow.com/Set-Up-Port-Forwarding-on-a-
Router.

[13] Yaler GmbH, “Access devices from the Web”, last viewed on 8-Oct-
2014, https://www.yaler.net/.

[14] IETF, “IPv6 over Low-Power Wireless Personal Area Networks
(6LoWPANs): Overview, Assumptions, Problem Statement, and Goals,
RFC 4919”, last viewed on 8-Oct-2014,
http://datatracker.ietf.org/doc/rfc4919/.

[15] Nordic Semiconductor, last viewed on 8-Oct-2014,
http://www.nordicsemi.com/.

[16] Bluegiga, “BLE121LR Bluetooth Smart Long Range Module”, last
viewed on 8-Oct-2014, https://www.bluegiga.com/en-
US/products/bluetooth-4.0-modules/ble121lr-bluetooth--smart-long/.

[17] CSR, “CSRmesh Development Kit”, last viewed on 8-Oct-2014,
http://www.csr.com/products/csrmesh-development-kit.

http://www.eetimes.com/document.asp?doc_id=1278927
https://developer.bluetooth.org/gatt/Pages/default.aspx
http://www.polar.com/en/products/accessories/H7_heart_rate_sensor
http://techcrunch.com/2014/02/28/parrots-flower-power-plant-sensor-gives-you-a-mobile-green-thumb/
http://techcrunch.com/2014/02/28/parrots-flower-power-plant-sensor-gives-you-a-mobile-green-thumb/
https://developer.bluetooth.org/gatt/Pages/GATT-Specification-Documents.aspx
https://developer.bluetooth.org/gatt/Pages/GATT-Specification-Documents.aspx
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=285910
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=285910
http://www.w3.org/TR/2009/WD-eventsource-20091029/
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=285911
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=285911
http://www.json.org/
http://www.limmat.co/
http://www.wikihow.com/Set-Up-Port-Forwarding-on-a-Router
http://www.wikihow.com/Set-Up-Port-Forwarding-on-a-Router
https://www.yaler.net/
http://datatracker.ietf.org/doc/rfc4919/
http://www.nordicsemi.com/
https://www.bluegiga.com/en-US/products/bluetooth-4.0-modules/ble121lr-bluetooth--smart-long/
https://www.bluegiga.com/en-US/products/bluetooth-4.0-modules/ble121lr-bluetooth--smart-long/
http://www.csr.com/products/csrmesh-development-kit

